Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
1.
Adv Mater ; : e2400425, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574376

RESUMO

Active transcytosis-mediated nanomedicine transport presents considerable potential in overcoming diverse delivery barriers, thereby facilitating tumor accumulation and penetration. Nevertheless, the persistent challenge lies in achieving a nuanced equilibrium between intracellular interception for drug release and transcytosis for tumor penetration. In this study, a comprehensive exploration is conducted involving a series of polyglutamine-paclitaxel conjugates featuring distinct hydrophilic/hydrophobic ratios (HHR) and tertiary amine-oxide proportions (TP) (OPGA-PTX). The screening process, meticulously focused on delineating their subcellular distribution, transcytosis capability, and tumor penetration, unveils a particularly promising candidate denoted as OPPX, characterized by an HHR of 10:1 and a TP of 100%. OPPX, distinguished by its rapid cellular internalization through multiple endocytic pathways, selectively engages in trafficking to the Golgi apparatus for transcytosis to facilitate accumulation within and penetration throughout tumor tissues and simultaneously sorted to lysosomes for cathepsin B-activated drug release. This study not only identifies OPPX as an exemplary nanomedicine but also underscores the feasibility of modulating subcellular distribution to optimize the active transport capabilities and intracellular release mechanisms of nanomedicines, providing an alternative approach to designing efficient anticancer nanomedicines.

2.
J Hazard Mater ; 470: 134286, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615649

RESUMO

Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.


Assuntos
Microplásticos , Oxidantes , Poluentes Químicos da Água , Oxidantes/química , Microplásticos/toxicidade , Microplásticos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Carbonatos/química , Purificação da Água/métodos
3.
Chem Commun (Camb) ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639031

RESUMO

Solid-state lithium-oxygen batteries offer great promise in meeting the practical demand for high-energy-density and safe energy storage. We have developed fibrous gel polymer electrolytes (GPEs) using a polyacrylonitrile (PAN) matrix via electrospinning. The 3D structure of GPEs enhances electrolyte absorption, while the interconnected design promotes strong interactions between Li+ and polar groups within the PAN matrix, thereby improving ion transport efficiency. In practical tests, both lithium symmetric cells and Li-O2 batteries demonstrated the ability to operate at high current densities over long cycles.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38615882

RESUMO

OBJECTIVE: This study aims to investigate the risk factors for carbapenem-resistant Pseudomonas aeruginosa bloodstream infection (CRPA-BSI) and identify predictors of outcomes among patients with P. aeruginosa bloodstream infection (PA-BSI). METHODS: A retrospective cohort study was conducted on patients with PA-BSI at Henan Cancer Hospital from 2013 to 2022. RESULTS: Among the 503 incidences analyzed, 15.1% of them were CRPA strains. Age, ANC<100/mmc, receiving antifungal prophylaxis, exposure to carbapenems within the previous 90 days to onset of BSI, and allogeneic HSCT (allo-HSCT) were associated with the development of CRPA-BSI. CRPA-BSI patients experienced significantly higher 28-day mortality rates compared to those with carbapenem-susceptible P. aeruginosa bloodstream infection (CSPA-BSI). Multivariate logistic regression analysis identified age at BSI, active stage of hematological disease, procalcitonin levels, prior corticosteroid treatment, isolation of CRPA, and septic shock as independent predictors of 28-day mortality. CONCLUSION: Risk factors for CRPA-BSI include age, ANC <100/mmc, antifungal prophylaxis, exposure to carbapenems, and allo-HSCT. Additionally, age at BSI, active hematological disease, procalcitonin levels, prior corticosteroid treatment, CRPA isolation, and septic shock contribute to increased mortality rates among patients with PA-BSI.

5.
Pediatr Hematol Oncol ; : 1-14, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436082

RESUMO

To evaluate the co-transplantation efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) and peripheral blood stem cells (PBSCs) as a novel approach for refractory or relapsed severe aplastic anemia (R/R SAA) in children and adolescents, thirty-two children and adolescents diagnosed with R/R SAA underwent a retrospective chart review. The patients were categorized into two groups based on the source of PBSCs: the matched sibling donor (MSD) group and the unrelated donor (UD) group. No adverse events related to UC-MSC infusion occurred in any of the patients. The median time for neutrophil engraftment was 13 days (range: 10-23 days), and for platelets, it was 15 days (range: 11-28 days). Acute GVHD of Grade I-II and moderate chronic GVHD were observed in 21.8 and 12.5% of cases, respectively. No statistically significant differences were found between the MSD and UD groups in terms of engraftment, GVHD, and complications, including infection and hemorrhagic cystitis. The median follow-up time was 38.6 months (range: 1.4-140.8 months). As of October 31, 2021, five patients had succumbed, while 27 (84.4%) survived. The 5-year OS rate showed no statistically significant difference between the MSD and UD groups (84.8 ± 10.0 vs. 82.4 ± 9.2%, p = 0.674). In conclusion, the application of UC-MSCs in the treatment of R/R SAA in PBSC transplantation is reliable and safe, they had no graft rejection, low incidence of severe GVHD which may have been contributed by the co-infusion of MSC.

6.
Neural Regen Res ; 19(11): 2387-2399, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526275

RESUMO

Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.

7.
Methods ; 224: 79-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430967

RESUMO

The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.


Assuntos
Descoberta de Drogas , Laboratórios , Interações Medicamentosas
8.
Sleep Med Rev ; 74: 101913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442500

RESUMO

Pharmacological treatments (i.e., melatonin) and non-pharmacological therapies (e.g., parent-based sleep education programs and behavioural interventions) have been found to result in improved sleep in children and adolescents with autism spectrum disorder (ASD). However, there are several limitations to these treatment approaches, including concerns about the possible side-effects and safety, high-cost and uncertainties of long-term effects. Physical activity (PA) intervention is a promising behavioural intervention that has received increasing attention. However, the effects of PA intervention on sleep are still unclear in this clinical group. This study aimed to synthesize available empirical studies concerning the effects of PA interventions on sleep in children and adolescents with ASD. Following PRISMA guidelines, seven electronic databases: APA PsychInfo, CINAHL Ultimate, ERIC, MEDLINE, PubMed, SPORTDiscus, and Web of Science, were searched from inception to March 2023. Randomized controlled trials/quasi-experimental designs with comparison groups were included. Initially, 444 articles were identified, 13 articles underwent systematic review, and 8 studies with control groups and sufficient statistical data were selected for meta-analysis. Compared to no-treatment control groups, PA interventions had a large positive effect on parent-reported general sleep problems, night awakenings, sleep resistance, sleep duration and actigraphy-assessed sleep efficiency in children and adolescents with ASD.


Assuntos
Transtorno do Espectro Autista , Distúrbios do Início e da Manutenção do Sono , Criança , Humanos , Adolescente , Transtorno do Espectro Autista/terapia , Sono , Terapia Comportamental , Exercício Físico
9.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536778

RESUMO

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Assuntos
Processos de Determinação Sexual , Tilápia , Animais , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo , Tilápia/genética
10.
Materials (Basel) ; 17(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473514

RESUMO

Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm-1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 µm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold.

11.
Mol Cancer ; 23(1): 33, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355583

RESUMO

BACKGROUND: Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS: In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS: The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION: Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.


Assuntos
MicroRNAs , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 60414 , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Integrinas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo
13.
Adv Sci (Weinh) ; 11(15): e2307063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342624

RESUMO

The high incidence of restenosis after angioplasty has been the leading reason for the recurrence of coronary heart disease, substantially increasing the mortality risk for patients. However, current anti-stenosis drug-eluting stents face challenges due to their limited functions and long-term safety concerns, significantly compromising their therapeutic effect. Herein, a stent-free anti-stenosis drug coating (denoted as Cur-NO-Gel) based on a peptide hydrogel is proposed. This hydrogel is formed by assembling a nitric oxide (NO) donor-peptide conjugate as a hydrogelator and encapsulating curcumin (Cur) during the assembly process. Cur-NO-Gel has the capability to release NO upon ß-galactosidase stimulation and gradually release Cur through hydrogel hydrolysis. The in vitro experiments confirmed that Cur-NO-Gel protects vascular endothelial cells against oxidative stress injury, inhibits cellular activation of vascular smooth muscle cells, and suppresses adventitial fibroblasts. Moreover, periadventitial administration of Cur-NO-Gel in the angioplasty model demonstrate its ability to inhibit vascular stenosis by promoting reendothelialization, suppressing neointima hyperplasia, and preventing constrictive remodeling. Therefore, the study provides proof of concept for designing a new generation of clinical drugs in angioplasty.


Assuntos
Curcumina , Hidrogéis , Humanos , Constrição Patológica , Células Endoteliais , Angioplastia , Curcumina/farmacologia , Curcumina/uso terapêutico , Peptídeos
14.
Food Chem ; 444: 138669, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341915

RESUMO

Improving the emulsion-stabilizing effect of protein by chemical or physical modification has been paid much attention recently. Here, sodium caseinate (CS) was treated by high-pressure-microfluidization (HPM) under 0-100 MPa, and was further complexed with (-)-epigallocatechin-3-gallate (EGCG) to form an excellent emulsifier that stabilized fish oil emulsions. Results showed that HPM treatment (especially 80 MPa) significantly changed the secondary structure of CS, and 80 MPa-PCS-EGCG had the best emulsifying and antioxidant activities. In addition, after HPM treatment and EGCG bonding, CS formed a thicker interface layer on the surface of oil droplets, which could better protect the fish oil from the influence by oxygen, temperature and ion concentration. Moreover, the fish oil emulsion stabilized by PCS-EGCG complex significantly delayed the release of free fatty acids subjected to in vitro digestion. Conclusively, HPM-treated CS-EGCG complex could be a potential emulsifier to improve the stability of fish oil emulsions.


Assuntos
Caseínas , Catequina/análogos & derivados , Óleos de Peixe , Emulsões/química , Óleos de Peixe/química , Caseínas/química , Emulsificantes/química
15.
J Infect Dev Ctries ; 18(1): 106-115, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38377097

RESUMO

INTRODUCTION: The spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a substantial severe global public health burden. Non-carbapenemase-producing CRKP (non-CP-CRKP) is increasingly recognized as the source of severe infections. METHODOLOGY: We analyzed the genotypic, and phenotypic profiles of non-CP-CRKP strains with the whole-genome sequences isolated between 2017 and 2019 and the clinical characterization of non-CP-CRKP infection. RESULTS: A total of 91 CRKP strains were collected, of which 5 (5.49%) strains were non-CP-CRKP. Four strains were from male patients; three strains were isolated from the bile of patients who underwent biliary interventional surgery and four had a history of antibiotic exposure. Three strains were sequence type (ST)11, one was ST1, and one was ST5523. The non-CP-CRKP strains were insusceptible to ertapenem. Three strains were susceptible to amikacin. All the strains were susceptible to imipenem, meropenem, tigecycline, ceftazidime/avibatam and polymyxin B. The ß-lactamases of non-CP-CRKP predominantly included blaCTX-M, blaSHV, and blaTEM subtypes. Two site mutations in ompK36 (p.A217S and p.N218H) and four in ompK37 (p.I70M, p.I128M, p.N230G, and m233_None234insQ) were detected accounting for carbapenem resistance. Plasmids IncFI and IncFII were found in most strains. Genes encoding aerobactin, yersiniabactin and allantoin utilization were not detected in several isolates, and all non-CP-CRKP strains did not carry rmpA gene. CONCLUSIONS: Non-CP-CRKP infected patients had a history of previous antibiotic exposure or invasive procedures. Non-CP-CRKP strains were insusceptible to ertapenem. The mechanism of resistance includes ß-lactamases production and the site mutations in ompK36 and ompK37. Several virulence genes were not detected in non-CP-CRKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Masculino , Carbapenêmicos/farmacologia , Ertapenem , Klebsiella pneumoniae , Centros de Atenção Terciária , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , China , Testes de Sensibilidade Microbiana
16.
Cell Discov ; 10(1): 14, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320990

RESUMO

The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences. Among them, PW5-570 potently neutralized all SARS-CoV-2 variants that arose prior to Omicron BA.5, and the other three could broadly neutralize all current SARS-CoV-2 variants of concern, SARS-CoV and their related sarbecoviruses (Pangolin-GD, RaTG13, WIV-1, and SHC014). Cryo-EM analysis demonstrates that these antibodies have diverse neutralization mechanisms, such as disassembling spike trimers, or binding to RBM or SD1 to affect ACE2 binding. In addition, prophylactic administration of these antibodies significantly protects nasal turbinate and lung infections against BA.1, XBB.1, and SARS-CoV viral challenge in golden Syrian hamsters, respectively. Importantly, post-exposure treatment with PW5-5 and PW5-535 also markedly protects against XBB.1 challenge in these models. This study reveals the potential utility of computational process to assist screening cross-reactive antibodies, as well as the potency of vaccine-induced broadly neutralizing antibodies against current SARS-CoV-2 variants and related sarbecoviruses, offering promising avenues for the development of broad therapeutic antibody drugs.

17.
Acta Pharm Sin B ; 14(2): 836-853, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322346

RESUMO

Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38381098

RESUMO

Small muscular pulmonary artery remodeling is a dominant feature of PAH. PSEN1 affects angiogenesis, cancer and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in PH. Haemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline (MCT) rats and Su5416/hypoxia (SuHx) mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that the Notch1/2/3, ß-catenin, Cadherin-1, DNER, TMP10 and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process of in hypoxic and MCT induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the non-canonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and be developed as a potential anti-PAH drug.

20.
BMJ Glob Health ; 9(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232994

RESUMO

Universal access to insulin remains a global public health challenge mainly due to its high price. After unsuccessful healthcare reforms attempting to lower insulin prices over the past several decades, the novel pooled procurement-also known as the national volume-based procurement (NVBP)was initiated exclusively for insulin in China. The NVBP exclusively for insulin represents a unique approach to conquering the challenges in the pooled procurement many low-income and middle-income countries face. In this paper, we described how the pooled procurement mechanism was implemented for insulin in China. Forty-two insulin products from 11 companies were procured, with a median price reduction of 42.08%. The procurement price ranged from US$0.35 to US$1.63 (¥2.35-¥10.97) per defined daily dose (DDD). The median procurement price per DDD was US$$0.54 (¥3.63) for human insulins and US$0.92 (¥6.18) for analogue insulin (p<0.001), respectively. A total of 32 000 medical facilities participated in the procurement, and the pooled demand for insulin was 1.61 billion daily doses, with an estimated saving of US$2.85 billion (¥19 billion) for the first year of the procurement agreement. Insulin affordability and accessibility improved substantially. This study reveals that the NVBP exclusively for insulin could effectively reduce insulin prices and improve access to this essential medicine. Even though the pooled procurement option looks efficient, its long-term impacts on the healthcare system should be closely monitored.


Assuntos
Acesso aos Serviços de Saúde , Insulina , Humanos , Insulina/uso terapêutico , Reforma dos Serviços de Saúde , China , Custos e Análise de Custo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...